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Abstract

Back in early November 2001, I started following a discussion between two factions of
the Linux kernel community. The gist of the discussion was over what was the best
solution to the Linux scheduler latency problem, that is the delay between the occurrence
of an interrupt and the running of the process that services the interrupt. There were two
main factions, the preemption patch faction and the low−latency patch faction. Both
groups were very passionate (i.e. vocal) about the superiority of their solution. Since one
of my jobs at Red Hat is to evaluate and recommend new techniques for embedded Linux
solutions and since scheduler latency is one of the biggest complaints that hard realtime
champions have about Linux, I decided to evaluate both patches and see which one came
out on top. 

Since I’m primarily interested in embedded Linux and since most embedded Linux
systems are uniprocessor systems, my testing focused exclusively on uniprocessors
systems. I tested both patches on a 2.4.17 kernel under heavy load and while both patches
significantly reduced kernel latency, the testing shows that the low−latency patches
yielded the best reduction of Linux scheduler latency. The low−latency patches had a
maximum recorded latency of 1.3 milliseconds, while the preemption patches had a
maximum latency of 45.2ms.  

A 2.4.17 kernel patched with a combination of both preemption and low−latency patches
yielded a maximum scheduler latency of 1.2 milliseconds, a slight improvement over the
low−latency kernel. However, running the low−latency patched kernel for greater than
twelve hours showed that there are still problem cases lurking, with a maximum  latency
value of 215.2ms recorded. Running the combined patch kernel for more than twelve
hours showed a maximum latency value of 1.5ms. This data seems to indicate that the
best solution for reducing Linux scheduler latency is to combine both sets of patches.

What is Scheduler  Latency?

What the heck does scheduler latency mean anyway? Latency is really a shorthand term
for the phrase latent period, which is defined by webster.com to be "the interval between
stimulus and response". In the context of the Linux kernel,  scheduler latency is the time
between a wakeup (the stimulus) signaling that an event has occurred and the kernel
scheduler getting an opportunity to schedule the thread that is waiting for the wakeup to
occur (the response).  Wakeups can be caused by hardware interrupts, or by other
threads. For simplicity’s sake, this article will concentrate on device interrupts when
discussing wakeups, but it should be noted that thread−based wakeups are handled
similarly.
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Another thing to remember as you read this article, is that when I talk about the problems
surrounding thread preemption, I’m talking about preempting kernel threads. User space
threads are fully preemptable and have been since very early versions of Linux. If you
don’ t know what I’m talking about, you should probably pick up one of the numerous
books on the workings of the Linux kernel.

Scheduling and Interrupts

When a thread issues an I/O request via a kernel system call (such as a read() call), if the
device driver that handles the system call cannot satisfy the request for data, it puts the
thread on a wait queue. This puts the requesting thread to sleep so that it will not be
eligible to run while waiting for the device to provide the data. The driver then insures
that the I/O request will generate an interrupt when the device completes the request and
then the driver returns control to the kernel. So at this point, the requesting thread is
asleep and the device is performing the requested I/O. 

The kernel goes on its merry way, running all threads that are eligible to run (this
excludes the thread that originated the I/O requests we’ re interested in). At some point
after the I/O request is issued, the device will complete the request and  assert an
interrupt line. This will cause an interrupt service routine to run in the kernel, which runs
the device driver’s interrupt handler. The driver will figure out if the data from the
device will satisfy the read request from the originating thread and if so, will remove the
thread from the driver wait queue, making it ready to run (this ’making a thread ready to
run’  is what we’ve been calling a wakeup ). As a consequence of completing the I/O
request and removing the thread from the wait queue, the kernel code will check to see if
the thread that has been awakened can run and if it can,  the kernel will indicate that a
scheduling pass needs to be made by setting the need_resched flag in the current task
structure.  

When the kernel gets to a point where scheduling is allowed, it will note that
need_resched is set and will call the function schedule(), which will determine what
thread should run next. If the thread that issued the read() has a high enough goodness
value (a value calculated from priority, amount of CPU−time used, and other things), the
kernel will context switch to it and when the kernel transitions back to user space the
thread will run and process the received data. The amount of time that elapses from when
the interrupt is asserted to when the thread that issued the I/O request runs, is what I call
kernel response time.

Components of Response Time

There are a four components that make up the kernel’s response time to an event:

                                   1.Interrupt Latency 

                                   2.Interrupt handler duration 

                                   3.Scheduler Latency 

                                   4.Scheduling duration 



The first component, interrupt latency is the amount of time that elapses between the
physical interrupt signal being asserted and the interrupt service routine running. The
second component interrupt handler duration , is the amount of  time spent in the routine
that actually handles the interrupt. The interrupt handler is the routine that sets the
need_resched flag, signifying that a scheduling pass is needed. The third component,
scheduler latency is the amount of time that elapses between the interrupt service routine
completing and the scheduling function being run. On an SMP system, this component
may be nonexistent, since the execution of the interrupt handler and the execution of the
scheduler may actually overlap. Since we’ re focusing on uniprocessor systems, overlap
of interrupt handler and scheduling will not be discussed further. The fourth component,
scheduling duration is the amount of time that elapses inside the scheduler proper to
decide what thread to run and context switch to it. 

This article will focus on the third component, scheduler latency and save interrupts and
scheduler discussions for another day. The reason is that the other three components
typically have very low duration’s, when compared the  scheduler latency.  Information
from Ingo Molnar is that interrupt latency for recent x86 hardware is on the order of
10µs, while interrupt handler duration is typically tens to at most low−hundreds of
microseconds, and scheduling  duration is a few microseconds. With maximum scheduler
latency weighing in at tens to hundreds of milliseconds on an unmodified Linux kernel,
you can see that the other three components are not of primary interest.

Why Reduce Scheduler  Latency?

Having a large scheduler latency means that the kernel doesn’ t respond very quickly to
I/O events. If you’ re building a Personal Digital Recorder (PDR), then you are going to
be processing the heck out of MPEG audio/video streams and you will want the kernel to
schedule your MPEG decoder process as quickly as possible. If somebody misses the
juicy  bits from their favorite B−movie because the video stream glitched, they’ re not
going to care that it’ s because the kernel was slowed down by a particularly slow write to
the internal disk. They’ re just gonna be mad that the movie  looks jerky.

Another example is companies that are implementing DSL modems with minimal
hardware. To reduce the cost of the device they want to do away with the Digital Signal
Processors (DSPs) that are used to process the analog signals on a phone line into DSL
cells or frames. They do this by offloading the signal processing algorithms to the main
processor (similar to the things that the infamous ?WinModems do). To successfully
implement this sort of scheme requires that the interrupt dispatch latency and thread
scheduling latency be minimized in the kernel. 

Scheduler  Latency Causes

Large scheduler latencies have numerous causes. One culprit are drivers that do lots of
processing in their entry points or interrupt service routine (ISR). Another is kernel code
that stays in a block of code for a long period of time, without  explicitly introducing
scheduling opportunities. Both of these things cause one problem: the kernel does not
have the  opportunity to perform scheduling calculations for a long period of time. Since
the scheduler is the mechanism for determining what process/thread should run, it needs
to be run with a relatively high frequency for the kernel to be responsive. The bottom
line goal of someone trying to reduce scheduler latency is to insure that opportunities to
run the  scheduler occur regularly, so that tasks needed to service events get a chance to



run as quickly as possible.

When discussing scheduler latency, there are two data points that most people are
interested in. The first is the  maximum latency, which is the largest value of scheduler
latency measured in a test run. Although this value is almost always statistically
insignificant, it is a killer when you’ re trying to decide whether to use Linux in a device.
Why? Because there are tasks where you cannot, ever, be late. Closing control valves in a
chemical plant, moving the control surfaces on a missile, things like that. Oh, you can be
late, but something catastrophic will happen if you are. So the maximum latency is
usually very interesting to system designers.

The other factor is the scheduler latency value below which five−9’s worth of samples
have occurred. Five−9’s is just marketing−speak for 99.999%, so the interesting point is
where 99.999% of the samples have occurred.  In addition to being overused by sales and
marketing types, this value is used by system designers when they’ re designing a system
that needs a scheduler to be good enough, and can tolerate some jitter in scheduler
response.

How to Reduce Scheduler  Latency?

A simple answer to that question is to run the scheduler more frequently. Unfortunately,
it’ s not quite that simple, since if you run the scheduler too fast, you spend all your CPU
cycles trying to figure out what should run and not enough of them actually running
threads. So it’ s really more important that scheduling calculations be run regularly, not
necessarily at a high rate. The actual answer is to run the scheduler as soon as possible
after an event (such as an interrupt) indicates the need for a scheduler pass.

Most Real Time Operating Systems (RTOS) have kernel code and drivers that are written
to be preemptable and applications are written to minimize delays. Most RTOS’s
prioritize device interrupts so that important interrupts ("shut down the reactor NOW!")
are serviced first and lower priority interrupts ("time to make the doughnuts") are
serviced  later. Threads are created into a fairly rigid priority hierarchy and the thread
scheduler ruthlessly schedules the highest  priority threads first.  When an event occurs
indicating that a thread needs to run, the RTOS runs the scheduler, which  context
switches to the thread that needs to service the event (assuming that the event is the
highest priority event currently in need of service).

In the Linux kernel, all interrupts are created equal; any prioritization of interrupts is left
to the hardware. The Linux kernel is not a preemptable kernel, in that the assumption is
made that once the kernel has been entered from a trap or
 syscall, the "current process" will not change unexpectedly (the current process can only
be rescheduled voluntarily).  Linux kernels use the thread scheduling policies
SCHED_FIFO and SCHED_RR to indicate that a task should be  scheduled ahead of
ones using the default policy SCHED_OTHER, but there is not a fine−grained priority
hierarchy  that would be available on an RTOS.  When an event occurs that requires a
thread to run, the Linux kernel sets a flag in  the current processes state structure,
need_resched , that is checked by kernel code to determine if a scheduling pass is needed.

Linux was not designed to be a RTOS. If you have a hard realtime target in the 10’s of
microseconds, you shouldn’ t be  looking at vanilla Linux as a solution; a modified kernel
such as FSM Labs ?RTLinux, or a dedicated RTOS are probably more suitable for you.



If however you have a situation where having five−9’s worth of samples below a
particular latency value and that value is in the low milliseconds or high hundreds of
microseconds, Linux may be what you want. 

Preemption Patches

One attempt at improving the responsiveness of the Linux scheduler came from
embedded Linux vendor Monta Vista (www.mvista.com). They introduced two kernel
modifications, a preemption patch and a realtime scheduler. The preemption patches have
gone through a number of releases and have been picked up by the Open Source
community.  They are currently maintained by Robert M. Love
(http://www.tech9.net/rml/linux).

The basic idea behind the preemption patches is to create opportunities for the scheduler
to be run more often and minimize the time between the occurrence of an event and the
running of the schedule() kernel function.  The preemption patches do this by modifying
the spinlock macros and the interrupt return code so that if it is safe to  preempt the
current process and a rescheduling request is pending, the scheduler is called. 

What do I mean by "safe to preempt the current process"? Originally, the Linux kernel
code assumed that upon entry to the kernel, be it from a trap or interrupt, the current
process would not be changed until the kernel decides that it’ s safe to reschedule.  This
assumption was a simplifying assumption that allowed the kernel to modify kernel data
structures without requiring that mutual exclusion primitives (such as spinlocks) be used
to protect the modifications. Over time,  the amount of code that modified kernel data
structures without protecting those structures has been reduced, to the point that the
preemption patches assume that if the code being executed is not an interrupt handler and
no spinlocks are being held, then it is safe to context switch away from the current thread
context.

The preemption patches added a variable to the task structure (the structure that
maintains state for each thread) named preempt_count . The preempt_count field is
modified by the macros preempt_disable(), preempt_enable() and
preempt_enable_no_resched() . The preempt_disable() macro increments the
preempt_count variable, while  the preempt_enable*() macros decrement it. The
preempt_enable() macro checks for a reschedule request by  testing the value of
need_resched and if it is true and the preempt_count variable is zero, calls the function
preempt_schedule() . This function marks the fact that a preemption schedule has
occurred by adding a large value (0x4000000) to the preempt_count variable, calls the
kernel schedule() function, then subtracts the value from  preempt_count. The scheduler
has been modified to check preempt_count for this active flag and so short−circuit some
logic in the scheduler that is redundant when being called from the preemption routine. 

The macro spin_lock() was modified to first call preempt_disable() , then actually
manipulate the spinlock variable. The macro spin_unlock() was modified to manipulate
the lock variable and then call preempt_enable() , and the macro spin_trylock() was
modified to first call preempt_disable() and then call preempt_enable() if the lock was
not acquired.

In addition to checking for preemption opportunities when releasing a spinlock, the
preemption patches also modify the  interrupt return path code. This is assembly



language code in the architecture specific directory of the kernel source (e.g. arch/arm or
arch/mips) that makes the same test done by preempt_enable() and calls the
preempt_schedule() routine if conditions are right. 

The effect of the preemption patch modifications is to reduce the amount of time
between when an wakeup occurs and  sets the need_resched flag and when the scheduler
may be run. Each time a spinlock is released or an interrupt routine  returns, there is an
opportunity to reschedule. Early versions of the preemption patches were strictly
uniprocessor, since the SMP code did not protect per−CPU variables for performance
reasons. Recent versions of the preemption patches now protect per−CPU variables and
other non−spinlock protected areas of SMP code that assume non−preemption, so are
being considered SMP safe.  There are still some problems, such as device initialization
code  that assumes non−preemption, but that is fixable by disabling preemption during
device initialization. 

Low−Latency Patches

A different strategy for reducing scheduler latency called the low−latency patches was
introduced by Ingo Molnar and is now maintained by Andrew Morton. Rather than
attempting a brute−force approach (ala preemption) in a kernel that was not designed for
it, these patches focus on introducing explicit preemption points in blocks of code that
may  execute for long stretches of time. The idea is to find places that iterate over large
data structures and figure out how to safely introduce a call to the scheduler if the loop
has gone over a certain threshold and a scheduling pass is needed (indicated by
need_resched being set). Sometimes this entails dropping a spinlock, scheduling and then
reacquiring the  spinlock, which is also known as lock breaking.

The low−latency patches are a simple concept, but one not so simple to implement. In
fact, they are somewhat high−maintenance. Finding and fixing blocks of code that
contribute to high scheduler latency is a time−intensive debugging task. Given the
dynamic nature of the state of the Linux kernel, the job of finding and fixing high−
latency  points in kernel code could be a full−time job. 

So, how does one find a high−latency block of code? One tool is Andrew Morton’s rtc−
debug  patch. This patch modifies the real−time−clock driver to look for scheduler
latencies greater than a specified threshold and when one occurs, dumps an oops stack
backtrace to the system log file. Examining the syslog file and looking at the routines
that show up the most leads to the long latency code blocks. From there, a programmer
must examine the logic that is causing the latency and either avoid the circumstances or
insert a preemption point.



What does a preemption point look like? Here’s a function from the kernel source file
fs/dcache.c:

                                     void prune_dcache(int count)
                                     {
                                         spin_lock(&dcache_lock);
                                         for (;;) {
                                             struct dentry *dentry;
                                             struct list_head * tmp;

                                             tmp = dentry_unused.prev;

                                             if (tmp == &dentry_unused)
                                                 break;
                                             list_del_init(tmp);
                                             dentry = list_entry(tmp, struct dentry, d_lru);

                                             /*  If the dentry was recently referenced, don’ t free it. * /
                                             if (dentry−>d_vfs_flags & DCACHE_REFERENCED) {
                                                 dentry−>d_vfs_flags &= ~DCACHE_REFERENCED;
                                                 list_add(&dentry−>d_lru, &dentry_unused);
                                                 continue;
                                             }
                                             dentry_stat.nr_unused−−;

                                             /*  Unused dentry with a count? * /
                                             if (atomic_read(&dentry−>d_count))
                                                 BUG();

                                             prune_one_dentry(dentry);
                                             if (!−−count)
                                                 break;
                                         }
                                         spin_unlock(&dcache_lock);
                                     }



This function iterates over the dcache list, attempting to reclaim cached dentry structures.
Note that the bulk of the function’s body is an infinite loop, that iterates over a variable
length list. The loop terminator is either when count dentry’s have been reclaimed or
when the list entry removed from the list is the list header, meaning that the entire
circular list has been processed.  When the rtc−debug kernel showed that prune_dcache
was a high−latency point, a lock−breaking preemption point was added:

                                     void prune_dcache(int count)
                                     {
                                         DEFINE_RESCHED_COUNT;

                                     redo:
                                         spin_lock(&dcache_lock);
                                         for (;;) {
                                             struct dentry *dentry;
                                             struct list_head * tmp;

                                             if (TEST_RESCHED_COUNT(100)) {
                                                 RESET_RESCHED_COUNT();
                                                 if (conditional_schedule_needed()) {
                                                     spin_unlock(&dcache_lock);
                                                     unconditional_schedule();
                                                     goto redo;
                                                 }
                                             }

                                             tmp = dentry_unused.prev;

                                             if (tmp == &dentry_unused)
                                                 break;
                                             list_del_init(tmp);
                                             dentry = list_entry(tmp, struct dentry, d_lru);

                                             /*  If the dentry was recently referenced, don’ t free it. * /
                                             if (dentry−>d_vfs_flags & DCACHE_REFERENCED) {
                                                 dentry−>d_vfs_flags &= ~DCACHE_REFERENCED;
                                                 list_add(&dentry−>d_lru, &dentry_unused);
                                                 continue;
                                             }
                                             dentry_stat.nr_unused−−;

                                             /*  Unused dentry with a count? * /
                                             if (atomic_read(&dentry−>d_count))
                                                 BUG();

                                             prune_one_dentry(dentry);
                                             if (!−−count)
                                                 break;
                                         }
                                         spin_unlock(&dcache_lock);
                                     }



Note the addition of the macro DEFINE_RESCHED_COUNT , which defines a counter
variable. There is also a label, redo,  and the conditional block at the start of the loop.
The TEST_RESCHED_COUNT(100) macro increments the counter  variable, tests it
against the argument and returns true if the variable is greater than or equal to the input
argument. So, after 100 iterations of the loop, the variable will be true and the if
statement body will be executed. The body resets the counter value to zero, then checks
to see if low−latency is enabled and a rescheduling request is pending
(current−>need_resched != 0). If a rescheduling pass is needed, the dcache lock is
dropped, the scheduler is called  (via the low−latency routine unconditional_schedule())
and the code then jumps to the label, which reclaims the dcache lock and starts the
process again.  This style of lock−breaking works because there is no order imposed on
the list. All this code is trying to do is reclaim count number of dentries from the dcache.
It doesn’ t matter that we restart from the head of the list when we drop the lock. If there
were an order to the list, we would have to reclaim the lock  after the call to
unconditional_schedule() so that we would maintain our position in the list. Assuming of
course that  the list didn’ t change around us when we context switched to another
thread... 

You might ask, why count loop iterations at all? Why not just check need_resched each
time at the top of the loop and call the scheduler if it’ s set? The reason is that we want to
avoid a condition known as livelock, which could occur if the scheduling pressure on the
system is very high. If the scheduling pressure is high (that is, there are many scheduling
events being generated and many threads available to run) it would be possible for the
system to do nothing but loop  between the redo label and the test of need_resched. By
only testing need_resched after a set of loop iterations,
we insure that some work gets done. 

Measur ing Scheduler  Latency

To measure the worst case scheduler latency of a particular kernel modification, I first
needed to generate a  heavy system load. I wanted to have a heavy load running on the
test system so that scheduling pressure  would be high and many kernel code paths would
be taken. As the load generator,  I used the cerberus burn−in suite from VA Linux.
Cerberus is a set of programs that absolutely hammers a Linux system’s various
subsystems. Red Hat uses a configuration of cerberus that is delivered in an RPM
package named stress−kernel. 

After a bit of experimentation, I set up stress−kernel to run the following programs:

                                           NFS−COMPILE

                                           TTCP

                                           FIFOS_MMAP

                                           P3_FPU

                                           FS

                                           CRASHME 



The NFS−COMPILE script is the repeated compilation of a Linux kernel, via an NFS
filesystem exported over the loopback device. The TTCP (Test TCP) program sends and
receives large data sets via the loopback device. FIFOS_MMAP is a combination test that
alternates between sending data between two processes via a FIFO and mmap’ ing and
operating on a file. The P3_FPU test does operations on floating point matrices. The FS
test performs all sorts of unnatural acts on a set of files, such as creating large files with
holes in the middle, then truncating and extending those files. Finally the CRASHME
test generates buffers of random data, then jumps to that data and tries to execute it. 

Once I had a way to load up the system, I had to come up with a way to measure latency.
I found a program on Andrew Morton’s website, called realfeel , that looked like it
would do what I wanted. Realfeel was  written by Mark Hahn and modified by Andrew
Morton, to specifically measure scheduler latency. It is very Intel IA32 centric, in that it
uses the Time−Stamp Counter register of Pentium II’ s and later, to measure elapsed time.
The program first changes its scheduler policy to SCHED_FIFO , making it a realtime
thread.  This insures that it will be scheduled before all other SCHED_OTHER tasks (the
default scheduling policy for  Linux). It then locks itself into memory, so page faults
won’ t be an issue.  and then determines a  cycles−per−second conversion between the
output of the rdtsc instruction (a 64−bit value) and wallclock  time from gettimeofday().
It then sets up the Real Time Clock (RTC) driver to generate a 2KHz stream of
interrupts. Finally, it reads an initial value from the time−stamp register and falls into the
measuring loop. 

The measuring loop first issues a blocking read on /dev/rtc . The realtime clock device
completes reads when an RTC interrupt occurs, so the reads should complete 2048 times
per second. The first action taken  after the read completes is to get another value from
the timestamp register, calculate the delta between the previous read and the current read,
then convert that number of cycles in to a value in seconds. Finally, since the ideal cycle
time would be 1/2048 or 488µs, the program calculates the difference between the
measured interval and the ideal interval. This value is the total scheduler latency
(including interrupt  latency). The delta between the ideal and actual delay is then
mapped to a histogram bucket (bucket size is 100µs) and the value of that bucket is
incremented. I modified realfeel to allow for a fixed number of  samples, so at the
completion of the number of samples, the histogram is written to a file. This file is then
statistically analyzed by a perl script and plotted using the gnuplot utility.  

I thought very hard about trying to break out the interrupt latency, interrupt duration and
scheduler duration components of the value measured by realfeel. To do so though would
require some fairly extensive instrumentation of the kernel and couldn’ t convince myself
that I wouldn’ t skew the numbers with the added instrumentation. I finally decided that I
could live with treating all of these as a constant.

The tests were run on a 700MHz AMD Duron system with 360MB RAM and a 20GB
Western Digital IDE  drive attached to a VIA Technologies ?VT82C686 IDE controller.
In each case, the kernel to be tested was  booted and the root account was logged onto
three consoles (X Windows was not run). On the first console, the ’ top’  utility was run.
On the second console the RH stress−kernel package was run. On the third console,  the
program ’ realfeel’  was run.



Kernel Configurations

When I started this project, the Linux kernel was in the throes of a VM system upheaval.
After trying a few  kernels, I ended up settling on the 2.4.17 kernel tree. I  testing with
three Linux kernel configurations:

                                   1.A vanilla 2.4.17 kernel 

                                   2.A preempt 2.4.17 kernel 

                                   3.A low−latency 2.4.17 kernel 

The vanilla configuration is the kernel as it comes from kernel.org. The preempt kernel is
the vanilla kernel with the preempt−kernel−rml−2.4.17−1.patch patch applied from
Robert Love’s site. The low−latency kernel is the vanilla kernel with the 2.4.17−low−
latency.patch applied from Andrew Morton’s  site.

Results

To compare the various kernel configurations, I booted the appropriate kernel, then ran
the stress−kernel  program. I then started realfeel with arguments to run for 5 million
iterations (5 million RTC clock interrupts) at an interrupt frequency of 2048 interrupts
per second (2KHz). This meant each run took  approximately 41 minutes to complete.
When the run finished, realfeel wrote a histogram file of the results. The histogram
shows the number of occurrences of a particular latency value, measured in milliseconds
and tenths of a millisecond. These histogram files were then fed into gnuplot to generate
a line graph of the run.  While examining the graphs, note that both axes are logarithmic
scales and that the X axis starts at 100µs.  This is important, since in all cases, the
majority of latency values fell below 100µs. 

The following graph represents a test run of the vanilla Linux 2.4.17 kernel. Following
the graph are some statistics generated by a perl script that analyzes the histogram data. 



vanilla−2.4.17.hist had 550 buckets containing 5000000 samples
maximum latency: 232.6ms
Mean: 0.0883230599960576ms
Standard Deviation: 2.11903578618566

                                     92.84442% of samples < 0.1ms
                                     97.08432% of samples < 0.2ms
                                     99.73050% of samples < 0.5ms
                                     99.84382% of samples < 0.7ms
                                     99.94038% of samples < 1ms
                                     99.97922% of samples < 5ms
                                     99.98096% of samples < 10ms
                                     99.98590% of samples < 50ms
                                     99.98828% of samples < 100ms
                                     100.00000% of samples < 232.7ms

The majority of latency measurements fall at or below below 5ms, but the graph shows
significant jitter and a large spike near the 200ms point. Not what you’d consider
consistent. The maximum latency measured was 232.6ms, the mean latency value was
88µs and 92.84% of the latency samples were below 100 µs.

The next graph is the results of running the preempt 2.4.17 kernel



preempt−2.4.17.hist had 62 buckets containing 5000000 samples
                                     maximum latency: 45.2ms
                                     Mean: 0.0528876799956937ms
                                     Standard Deviation: 0.0461523751362407
                                     97.95326% of samples < 0.1ms
                                     99.55722% of samples < 0.2ms
                                     99.97026% of samples < 0.5ms
                                     99.98960% of samples < 0.7ms
                                     99.99650% of samples < 1ms
                                     99.99954% of samples < 5ms
                                     99.99982% of samples < 10ms
                                     100.00000% of samples < 45.3ms

This graph shows that the preemption patches improve the latency of the vanilla kernel
by a significant amount. Note that the curve is a bit steeper than the vanilla kernel graph
and that the majority of samples fell below 5ms. The maximum latency encountered was
45.2ms, the mean latency value was 53.8µs and  97.95% of the samples fell below 100µs.

Finally, here’s the graph and statistics for the low−latency 2.4.17 kernel. 



Low−latency−2.4.17.hist had 12 buckets containing 5000000 samples
                                     maximum latency: 1.3ms
                                     Mean: 0.0542797399957571ms
                                     Standard Deviation: 0.025220506601371
                                     96.66250% of samples < 0.1ms
                                     99.21158% of samples < 0.2ms
                                     99.99592% of samples < 0.5ms
                                     99.99984% of samples < 0.7ms
                                     99.99992% of samples < 1ms
                                     100.00000% of samples < 1.4m

As you can see, the low−latency patches really make a difference in the latency behavior
of the kernel. The maximum observed latency value is 1.3ms, the mean latency value is
54.2µs, and 96.66% of the samples occurred below 100µs. 

In marketing−speak terms, the vanilla kernel has five−9’s worth of samples somewhere
above 100ms, the preemption kernel has five−9’s worth of samples below 5ms and the
low−latency kernel has five−9’s worth of samples below 700µs.

Here is a graph that compares the performance of the preemption patches versus the low−
latency patches



Dogs and Cats, L iving Together?

After spending a few weeks staring at the preemption and low−latency patches, it began
to dawn on me that they didn’ t intersect. By that, I mean that they touch different areas
of kernel code and it looked like they could both be applied to the same kernel. So I did.
I patched a 2.4.17 kernel with the preemption patch, then added the low−latency patches.
After compiling the kernel, I ran it in my test setup and got the following results:



preempt−lolat−2.4.17.hist had 11 buckets containing 5000000 samples
                                     minimum latency: < 0.1ms
                                     maximum latency: 1.2ms
                                     Mean: 0.0520061799956548ms
                                     Median: 0.05ms
                                     Mode: 0.05ms (occurred 4915634 times)
                                     Variance: 0.000282321298762259
                                     Standard Deviation: 0.0168024194318038
                                     98.31268% of samples < 0.1ms
                                     99.76028% of samples < 0.2ms
                                     99.99648% of samples < 0.5ms
                                     99.99978% of samples < 0.7ms
                                     99.99992% of samples < 1ms
                                     100.00000% of samples < 1.3ms

The combined patches actually improved scheduler latency slightly, reducing the
maximum latency observed from 1.3ms in the low−latency kernel to 1.2ms in the
combined preempt+low−latency patched kernel. While this was not as big a win as the
gain from the low−latency patches, it did show that combining the patches was of some
benefit.  A comparison graph of the low latency performance versus the combined patch
performance shows that the combined patches have a slightly tighter curve, bringing
more latency values in under the 100µs mark.



Finally, I decided that I needed some runs that were longer than 41 minutes (five million
samples at 2048 samples per second), to see if there are some latency conditions that
arise after hundreds of millions of samples of the test program. I kicked off a run of the
low−latency kernel that ran for 14.5 hours and saw that a corner case had indeed
occurred, bumping the maximum latency to 215.2ms. The next night I ran the combined
preempt+low−latency kernel for 15.5 hours and got a maximum latency of 1.5ms. The
results are show in the following graph:



This graph shows that while the low latency patches give the best performance for effort,
there are latency corner cases that have not been isolated. In addition, the increased
potential for scheduling opportunities that the preemption patches introduce begin to
show their worth as the kernel load increases. Even if the  200ms blip in the low−latency
kernel is discounted, adding the preemption patches improves the performance curve by
two or three milliseconds.

Conclusions

While both patches reduce latency in the kernel, the low−latency patches are the biggest
single win. The  biggest problem areas in delaying Linux scheduling decisions are large
blocks of kernel code (usually loops)  that delay scheduling opportunities. Finding these
blocks and introducing preemption points is the most effective mechanism for improving
kernel response time. 

Using only the preemption patches is not as useful as using only the low−latency patches.
However, combining the two patches increases the granularity of scheduler opportunities
and seems to offset high latency areas of code as the kernel load increases over long
periods of time.  



As I was finishing up work on this article, I received word from Ingo Molnar that the
principle authors of  both patches (Robert Love and Andrew Morton) were working to
unify their patches into a single latency patch, for possible inclusion into the 2.5
development kernel. It is unclear how much of this work will be back−ported to the 2.4
production series kernels, but he future of soft−realtime for Linux looks brighter now
that everyone is pulling in the same direction. 

Future Work

One thing that needs to be done is to repeat this series of measurements on something
other than an x86 system. In particular, it should be done on the popular embedded
processors, such as ARM, MIPS, PPC and SH. Doing this means solving two problems:
creating a realistic load generator for a system with no disk and modifying the realfeel
program to use a different time measurement mechanism. Work is currently in process to
create a load generator for diskless systems and then the realfeel program will have to be
ported to use a different time measurement mechanism.

Another experiment will be to use external instrumentation to measure scheduler latency,
as well as other kernel performance values such as interrupt latency. This will involve
using a function generator to provide an interrupt source and an ocilloscope to measure
response time. A modified device driver and application pair will be needed to respond to
interrupts and provide appropriate outputs to trigger the oscilloscope. 


